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Abstract 
 
The term innovation resonates broadly in cyberspace, books, and journals. A careful 

analysis of the vast open-source information indicates the engineering literature on the 

underlying science of innovation is limited. Innovations in any domain can be enhanced 

by principles and insights from different disciplines. However, the process of identifying 

the linkages between the diverse disciplines and the target domain is not well understood. 

The innovation process and conditions triggering innovation set the stage for economic 

progress. The paper contributes to better understanding of the process of innovation by 

introducing basic innovation models. The ideas outlined in the paper provide a roadmap 

for areas of future study as innovation science can provide a pathway for industries to be 

able to successfully compete in the global market. 

 
 
Keywords: Innovation science, innovation process, data mining, knowledge discovery, 
evolutionary computation. 
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1. Introduction  
A product, process, service, or a business can be described with various metrics, e.g., 

cost, quality, reliability.  The emerging metric of particular interest is innovation. Piand 

(2003) described innovation as the activity of people and organizations to change 

themselves and the environment. The latter implies breaking a routine way of thinking 

and using new approaches. The scope of innovation varies from product and process to 

organization or even a society. The nature of innovation is user dependent, e.g., a product 

innovation for a designer can be a process innovation for a manufacturer. 

 

The 21th century customers are better informed than ever before. The interaction time 

between a customer and a product has reduced. Companies are forced to analyze 

customer needs and behaviors impacting the product success in the marketplace. 

 

Innovation in a manufacturing environment is often expressed in the literature as a 

function of uncertainty between a product and a process as illustrated in Fig. 1.  

 
Process

Known Unknown

 
 

Figure 1. Innovation quadrant. 
 
The lower right quadrant (shaded) in Fig. 1 involves unknown (high uncertainty) process 

and unknown product and therefore is considered as the quadrant with the highest 

innovation potential.  However, innovation may take place in any of the remaining three 

quadrants. Thus each quadrant represents innovation of a different nature and scope. For 
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example, innovation in the upper left quadrant may involve a subassembly or even a 

component. 

 

The study of innovation – the development of new knowledge and artifacts – is of interest 

to engineering, business, social and behavioral sciences, and spans sociology, history, 

philosophy, economics, psychology, and political science (Troyer 2005). Innovations 

transform economies (e.g., California's agricultural economy transformed into the 

knowledge-based Silicon Valley economy).  Innovations alter global relations (e.g., the 

impact of nuclear technologies on international treaties), and produce new structures of 

social control (e.g., the creation of international regulatory agencies to oversee 

pharmaceutical industries).  Innovations change the day-to-day lives of individuals (e.g., 

the development and introduction of new biopharmaceutical discoveries that affect 

quality of life).  

 

Innovations in any domain can be enhanced by principles and insights from other 

disciplines. However, the process of identifying the linkages between different domains 

and the need for innovation science is apparent. Innovations of products and processes 

are of particular interest to manufacturing and service applications.  

 

1.1 Why Innovation Science? 

There is a growing consensus among industry and academia that innovation should be 

studied.  There are several new initiatives that address innovation.  Two of the more 

prominent ones include: (1) the report Innovate America, published by the Council on 

Competitiveness (NIIR 2004), and (2) the Center for the Study of Innovation and 

Productivity launched by the San Francisco Federal Research Board 

(http://www.EconData.net) to study innovation, technology and productivity and 

their contributions to economic activity. Some of the facts that warrant accelerated 

development of innovation science include: 

• Innovation is the engine of the global economy, accounting for some 50% of the 

economic growth (NIIR 2004).  
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• Innovation will mark the first economic revolution of the 21st century (Shah 

2004). 

• Innovation involves almost all aspects of life, yet the innovation process is not 

well understood. 

• Innovation applies to the creation of methods used in industry, including the 

design of consumer goods, defense products, medical devices, medications, and 

services. 

• The increasing complexity of technologies, their interdependencies, and the 

rapidly expanding volume of data call for a paradigm shift to be led by 

innovation.   

• Educational revolution, in particular in engineering, is needed to create innovative 

workforce. 

 
Innovation has been studied by psychologists and group process researchers at multiple 

levels, including the organizational level. Researchers have investigated how alternative 

leadership styles, varying degrees of worker autonomy, and organizational cultures (i.e., 

systems of values, norms, and beliefs) affect innovation in R&D teams (e.g., Cohen et al. 

1982; Troyer 1995, 2004). 

 

There are several areas where the study of innovation could initiate and potentially 

formalize the science of innovation.  This includes the study of existing literature and 

patents, and innovators and creators (e.g., musicians, painters).  Based on these studies 

one can conceptualize and model the innovation processes and its generalizations across 

engineering, arts, science, and social domains.   

 

1.2 Basic Typology of Innovation   

The industry has used three basic approaches to innovate: structured, creative, and 

dynamic, producing either a sustaining or disruptive product referred to as innovative 

(Allen 2003). Structured innovation spawned during the industrial era, was engineered to 

be highly efficient and replicable by innovating within set guidelines. It has been 

primarily used in large corporations, and it emphasizes internal leadership, strategic 
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planning, effective execution of ideas, shareholder pressure, and financial resources more 

than other approaches, while placing less emphasis on a creative environment (Report 

2003). Creative innovation thrives more often in small organizations where focusing on 

“the big picture” can be accomplished more easily as these companies tend to consider 

the inspirational aspects of innovation versus the process (Allen 2003; Shah 2004). The 

greatest advantage to the creative approach is the process itself (Report 2003). Dynamic 

innovation is a blend of both the structure and creative innovation approaches. Businesses 

of all sizes from small to large have used the dynamic approach to produce successful 

innovation. Dynamic innovation has taken on the aspects of structured innovation that 

embody strategic thinking and planning, along with the need for execution of projects. 

Dynamic innovation incorporates cross-functional collaboration and makes the senior 

executive in charge of the innovation in the company. Even though 36% of participating 

companies have adopted this method, most of them would rank it as high risk (Report 

2003).  

  
Sustaining innovations are built off previous innovations (Allen 2003), e.g., the palm 

PDA. The PDA been an innovative and successful device, however, its predecessor the 

Apple Newton has failed. Sustaining innovations tend to be more successful then the 

disruptive innovations. The reason for this is that sustaining innovations are built based 

on a product or a process that is known to the market. The sustaining innovation is easier 

to develop and market, as it follows the incumbent. 

 

Disruptive innovations are referred to as paradigm-shifters. They make current standards 

obsolete and anticipate future needs (Allen 2003). In the past, the heuristic rule was that a 

disruptive innovation occurred once every few decades, e.g., electricity, steam engines, 

assembly lines. Nowadays, innovations are brought to market more frequently, e.g., 

yearly. The example mentioned of a disruptive technology, Apple Newton, was large, 

bulky and not user friendly. Disruptive innovation is often not profitable, since it is 

expensive to develop and market. Some corporations do not invest in disruptive 

innovations due to the increased risk of losses. 
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2. Product Requirements and Innovation 
The past two decades have seen the customer perspective reflected mostly in the product 

function and form. In the 1980th the interest has begun to shift from the requirements 

defined by experts (often design engineers) to the customer defined requirements. This 

customer focus has been driven by the necessity to increase customer satisfaction. The 

commonly used attributes used to measure customers’ satisfaction often involved quality, 

reliability, and cost. The broadly accepted industrial initiatives such as concurrent 

engineering, integrated product and process design, and kaizen programs, have taken as 

serious look at the customer oriented attributes in the design of new products.  

 

Product innovation I can be expressed as a function of requirements x, I = f(x). 

Understanding the requirements is key to the design of innovative products. 

The more sophisticated and informed customer has imposed higher expectations on the 

product. A customer of today not only wants to get a product he/she perceives (product 

personalization), but is also impacted by additional attributes such as surprise (e.g., 

unexpected product function), pleasure (e.g., driving a car), fantasy, and so on. The list of 

these new requirements has not been completely defined; rather it evolves in time (see 

Fig. 2).  

 
 

Figure 2. Expanded list of requirements. 
 
One will likely see new product attributes (introduced by new requirements) emerging in 

time. They will be reflected in the product designs and used in marketing to attract new 
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customers. It will take multidisciplinary research to develop better understanding these 

attributes and matching them with the product development programs.   

 

An innovative design may emerge from the previous generations of the same product by 

considering new requirements. The innovation problem can be then reduced to the 

requirements formulation problem. An attempt should be made to capture the innovation-

prone requirements as early as possible, ideally at the requirements formulation phase 

(Design phase 0 in Fig. 1) of the design process. One should also realize that additional 

requirements can be generated later in the design process (see Fig. 3). In fact any 

alteration of the existing and new requirements may take place along the product 

development life-cycle.  

 

Innovation
requirements 0

Design 
phase 0

Innovation
requirements 1

Design 
phase 1

Innovation
requirements 2

Design 
phase 2

 
 

Figure 3. Context and time dependent innovation engine. 
 
 

An open question that deserves separate investigation is how much of innovation happens 

outside of the requirements fostering innovation. The answer to this question is not easy 

as historical data and examples that could support or reject this hypothesis may not be 

easily available. One could argue, however, that even if the innovative aspect of the 

design has been conceived without a previously formulated requirement such a 

requirement could be generated when a serious attempt to create it would have been 

made. 
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Though many of the innovation issues included in this paper are discussed in the context 

of product design, they equally apply to the design and creation of processes and services. 

Using the proposed approach to generate hybrid solutions, e.g., a product, a process, and 

a service supporting the product could be the greatest asset.  

 

2.1 Definition of refined requirements 

There are numerous ways of eliciting detailed requirements: 

• Traditional customer surveys and user-based input 

• Data analysis, in particular data mining (e.g., Kantardzic 2003) 

• Evolutionary computation tools, in particular genetic programming discussed later 

in this paper. 

Any approach producing requirements leading to product success is commendable. The 

focus of this research is to explore formal approaches to the generation of requirements, 

especially such requirements that are likely to produce innovative designs. Examples of 

two approaches that naturally fit here are data mining and evolutionary computation. 

They could be used independently or work in tandem.  

 

Data-mining algorithms discover patterns in the data that may transform into 

requirements of interest. Since the width of data analyzed by the data-mining algorithms 

is practically unlimited, the patterns are likely to be unanticipated and interesting. The 

value delivered by these patterns is strictly related to the quality of data and textual 

databases used for mining. Besides the comprehensiveness of data processing, data 

mining brings yet another advantage – it may be used to support the needs of an 

individual customer.   

 
 
3. Innovation Science Research  
Scholars of technology have indicated that innovation lies at the intersection of science 

and technology (e.g., Pinch and Bijker 1990).  Within this perspective, "technology" is 

synonymous with "applied science" (i.e., the production of goods and services based on 

scientific research). One view proposes that innovation becomes possible through 

advances in basic science (e.g., the development of new ideas and theories) and is 
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realized in concrete products within the context of applied science.  Another view 

suggests that the development of innovative products through applied science generates 

new resources on which basic science draws to advance new ideas and theories (Troyer 

2005). Barnes (1982) has proposed that science and technology are enjoined in a 

symbiotic relationship, drawing from and contributing to one another's cultures. The 

symbiosis, however, may not always involve facilitative relations. Interactions between 

basic and applied scientists are often characterized by conflict arising from different 

research methods and strategies, status tensions, and differences in occupational cultures 

(e.g., Haribabu 2000). 

 

As a new science, innovation is likely to borrow concepts from the existing sciences, e.g., 

data mining, evolutionary computation, cognitive sciences. Creativity and innovation are 

often considered as inseparable (Sternberg 2005). In fact, the breadth of the science base 

of innovation is likely to be larger than any of the known sciences.   

The following five models of interest to innovation science are discussed next: 

1. Hypothesis-based model 

2. Optimization-based model 

3. Evolutionary computation model 

4. Pattern discovery model 

5. Process model 

 
3.1 Hypothesis-Based Model 

The innovation science should look at the role of hypothesis driven vs hypothesis 

discovery research. A framework for maintaining the proper balance between the two 

should be established. Hypotheses fostering innovation may have different ownership. In 

the product design context they can be generated by the customers, marketing 

departments, or the designers themselves. The growing volume of data collected along 

the product life-cycle and the information about the customers warrants a hypothesis-

based discovery approach to be supported by data mining. The difference between the 

two approaches is highlighted in Fig. 4. 
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Figure 4. Information flow. 

 
The emerging hypothesis-discovery approach changes the direction of information flow 

along the product-life cycle.  

 

3.2 Optimization-Based Model 

An optimization model of innovation involves objective function and constraints. For 

example, consider the innovation function in Fig. 5. Maximizing the innovation function 

I = f(x) subject to a constraint 1≤  x ≤  3 would produce a local maximum, however, 

relaxing this constraint   to 1 ≤  x ≤  6 could result in a global maximum. Modifying the 

same constraint to 4.5 ≤  x ≤ 5.5 would be equivalent to a targeted innovation, where a 

reasonable effort (represented by the computation needed to determine the maximum of 

the function I = f(x) (in Fig. 5) would maximize the innovation impact.   

 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 5. Innovation function I = f(x). 
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The optimization model of innovation is generalized by the evolutionary computation 

framework, in particular genetic programming discussed next.   

 

3.3 Evolutionary Computation Model 

Evolutionary computation deals with models based on natural evolution. A number of 

evolutionary computational algorithms have been developed, including genetic 

programming (e.g., Koza 1992, 1994 and Benzhaf et al. 1998), evolutionary algorithms 

(e.g., Coello 1999), evolutionary strategies (e.g., Eiben and Smith 2003), and artificial 

life (e.g., Engelbrecht 2003).  

 
The applicability of evolutionary computation to innovation science is illustrated with 
genetic programming.  
 

What is genetic programming? 

Genetic programming is an algorithm that can be used in a variety of ways to process 

data (Koa 1992). The proposed use of genetic programming in requirements-based 

innovation is to generate unexpected combinations of requirements, product functions, or 

product architectures. Besides functioning on its own, the genetic programming algorithm 

could be used in conjunction with data mining. 

Genetic programming uses biologically inspired operations such as reproduction, 

crossover, and mutation, which are similar to those used in genetic algorithms. In 

addition it involves architecture-altering operations, more general solution representation 

schemes, and more rich operators than those of genetic algorithms.  

 

The main steps of a genetic programming algorithm include (Koza 1992, 1994]: 

Creation of Initial Population of Solutions 

Functions and terminals are used to generate a random population of initial solutions. The 

set of functions may include arithmetic functions and conditional operators. The set of 

terminals include external inputs (such as the features) and random constants (such as 

5.10 and 44.35). The randomly created initial solutions are typically of different sizes and 

shapes.  
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Main Loop of Genetic Programming Algorithm 

The main loop of genetic programming includes fitness evaluation, selection, and genetic 

operations. The fitness of each individual solution in the population is evaluated. 

Solutions are then probabilistically selected from the population based on their fitness to 

participate in the various genetic operations, with reselection allowed. While a solution 

that is fit may have a better chance of being selected, unfit individuals compete. After 

numerous generations, an acceptable solution emerges. 

Mutation Operation 

The mutation operation selects probabilistically a single parental solution from the 

population based on the fitness value. A mutation point is randomly chosen, the partial 

solution rooted at that point is deleted, and a new partial solution is grown according to 

the same random growth process that was used to generate the initial population.  

Crossover Operation 

In the crossover, two parental solutions are probabilistically selected from the population 

based on the fitness value. The two parents participating in crossover are usually of 

different sizes and shapes. A crossover point is randomly chosen at the first parent and a 

crossover point is randomly chosen at the second parent. Then the partial solution at the 

crossover point of the first parent is deleted and replaced by the partial solution from the 

second parent. The crossover operator is dominant in genetic programming.  

Reproduction Operation 

The reproduction operation copies a single individual solution, probabilistically selected 

based on fitness, into the next generation of the population. 

Structure-Altering Operations 

Rather than using a user-specified fixed structure for all solutions in the population, 

genetic programming allows for structure-altering operations to automatically determine 

solution structure that correspond to the natural gene transformations. These structure-

altering operations produce population containing architecturally diverse solutions.  

 

While most steps of the genetic algorithm appear to be feasible for implementation in 

innovation-driven product design, construction of the fitness function and its evaluation 

methods are not easy. For example, consider the design of modular products with a set of 
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predefined components. Writing a computer program to evaluate the different part 

configurations appears to be difficult, especially in mechanical design. Representing an 

internal solution produced by the genetic algorithm with geometry would certainly ease 

this evaluation. For example, consider the visual evaluation of the fitness function 

illustrated in Fig. 6, where the genetic programming solution (GP) is expressed with 

geometry (a phenotypic expression).  The quality of the geometry (design) is evaluated 

by a human user and the feedback is provided to the genetic programming algorithm.  

 

 
 
Figure 6. Phenotypic evaluation of the fitness function (The product design is courtesy of 

Deere & Company, Moline, IL). 
 

 

The geometric evaluation of the fitness function shown in Fig. 6 is one of many possible 

ways of providing feedback to the GP algorithm. 

 

3.4 Pattern Discovery Model 

The role of patterns in innovation offers a great potential especially as large volumes of 

data become available. The data with potential impact on design is collected prior, 

during, and after the product has been designed. In essence, the design of a product is 

embedded in the data space containing knowledge pertaining to different aspects of the 

design, including innovation.  

 

The patterns discovered in data may change the design paradigm form an open-loop 

system (see Fig. 7) to the closed-loop system shown in Fig. 8. 
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Figure 7. An open-loop design system. 
 
 

Tradition design is essentially an open-loop design with the information flowing in one 

direction.  

The patterns discovered from the data provide a valuable feedback to the design. Thus an 

open-loop design system becomes a closed-loop design system (Fig. 8). Though the 

scope of patterns in design may be large, innovation may be one of the greatest 

beneficiaries of the pattern discovery with data-mining algorithms. 
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Figure 8. The innovation-in-the-loop design system (The product design is courtesy of 
Deere & Company, Moline, IL). 

 
 
The data-mining extracted patterns can be descriptive (e.g., formed with clustering 

algorithms) and predictive (e.g., extracted with decision-rule algorithms). Examples of 

the two types of patterns are discussed next. The forming of descriptive patterns is 

illustrated with the dependency structure matrix and clustering, while the predictive data 

mining is illustrated with decision rules. 

 

Dependency Structure Matrix 

In traditional design of products and product families, only limited interactions have been 

considered, mainly spatial interaction, energy, information, and material (Browning 

2001).  Physical proximity, alignment, and orientation were the underling reasons for 

defining these interactions.  A frequent use of this interaction information would be 

modularity defined by the concept of the dependency structure matrix (DSM) (Steward 

1981, Kusiak and Wang 1993, Ulrich and Eppinger 2000). The traingularization 

algorithm (the matrix reorganization algorithm) discussed in Kusiak et al. (1994) derives 

the interaction patters by transforming the dependency-structure matrix from an 

unstructured form to the form that most resembles the lower triangular matrix.  
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Clustering 

Innovation calls for expanded definition of interactions, and determining a variety of 

patters. All patterns can be important, irrespectively of the type of interactions among 

them. Components that interact directly are candidates for modules (called here physical 

modules), while parts with no physical proximity and interactions form logical (virtual) 

modules. For example, if the same type and size tires and the steering wheels (a logical 

module) would be used across 95% of the in the designed vehicles, they would likely be 

assembled on the vehicle in the factory. However, tires of 20 different types and 25 

stirring wheels would be likely mounted at the car dealership. The information present in 

the patterns can be used in different ways. The close proximity information is likely to be 

utilized at the product design stage (physical module design). However, the logical 

modules can be implemented in a number of ways, e.g., as late product differentiators at 

the product assembly stage, or a sales outlet. Some of the component interactions 

discovered with data mining that may appear to be incidental could in fact be a source of 

innovation. For example, the vehicle could be steered with a mechanism different that the 

steering wheel. 

 

Clustering algorithms form groups of objects that share common properties. The early 

cluster analysis algorithms are the k-means algorithm, ISODATA, and the quick partition 

algorithm (Anderberg 1973). Cluster analysis algorithms falls into the category of 

unsupervised classification tools. For review of most recent cluster analysis algorithms 

see Han and Kamber (2001) and Kusiak (2000). 

The computational intelligence community has studied conceptual clustering (Michalski 

1983) as well as other methodologies with a statistical flavor. The basic idea behind 

conceptual clustering is that instead of considering the similarity between objects, 

conceptual cohesiveness among the objects is considered as a criterion for classification. 

Conceptual clustering techniques are context based and arrange objects hierarchically 

(Michalski 1983). 

 

Autoclass is a known Bayesian classifier proposed by Cheeseman et al. (1988). Their 

strategy involved making simplifying assumptions about the classification model. Rather 
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than searching the entire hypothesis space and considering all states, they focused on a 

limited number of possible states thereby reducing the number of possibilities to be 

analyzed. In the case of real value attributes, the assumption is that data is distributed 

according to the normal probability distribution. A multinomial distribution is assumed 

for the discrete attributes. Autoclass uses the expectation maximization (EM) algorithm 

(Dempster 1977), to estimate the class parameters that maximize the posterior probability 

of the parameters for a given number of classes. The Autoclass algorithm can be 

downloaded from the NASA (2005) website.  

 

Decision rules 

Decision-rule and decision-tree algorithms belong to a large class of supervised learning 

algorithms generating explicit knowledge (patterns). The two classes of algorithms have 

been implemented in numerous ways, for example: 

• Decision-tree algorithms (e.g., ID3 [Quinlan 1986], CN2 [Clark and Boswell 

1989], C4.5 [Quinlan 1993], T2 [Auer et al. 1995], Lazy decision trees [Friedman 

et al. 1996], OODG [Kohavi 1995], OC1 [Aha 1992], AC, BayTree, CAL5, 

CART, ID5R, IDL, TDIDT, and PROSM [all discussed in Michie et al. 1994]). 

• Decision-rule algorithms (e.g., AQ15 [Michalski et al. 1986], LERS [Grzymala-

Busse 1997, and numerous other algorithms based on the rough set theory 

[Pawlak 1991]).  

 

Structured rules  

The decision rules extracted in data mining may be used in “as-is” form or be structured. 

Rule structuring (Kusiak 2000a), is to enhance interpretability of the knowledge 

generated with machine learning algorithms. The need for knowledge structuring is 

supported by the notion of cognitive maps and mental models discussed in Caroll and 

Olson (1987) and Wickens et al. (1998). By structuring decision rules a human 

dimension will be incorporated into the knowledge extracted from data.   The idea of 

structured knowledge is introduced by two examples of simplified decision tables 

presented in Fig.  9.  Each of the four decisions A – D in Fig. 9(a) is made based on the 

same number of features. A learning algorithm has derived each of the four decision rules 
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based on 1,000 examples. There is no exception to these rules, which creates an ideal 

decision-making setting that could be easily automated.  The decision-maker matches the 

features of a new decision case with the features in the decision table and assigns the new 

case a decision equal to one of the four decision rules represented in the table. For 

example, a new case with the feature values F1 = yes, F2 = 1, F3 = 1.9 would be assigned 

decision B by Rule 2 of Fig. 9(a). Note that in this table the decisions are differentiated 

based on the feature values, rather than the features themselves. 

In the decision table in Fig. 9(b) the decisions A – D are differentiated on features. Each 

of the four decisions is made based on the values of three to four different features. The 

feature sets associated with each of the four rules and decisions are mutually exclusive.   

(a)  

yes  1 [8.1-9.9]Rule 1

Rule 2

Rule 3

Rule 4

F1   F2     F3

A

B

C

D

Decision

yes  1 [1.7-2.1]

no  2 [2.2-4.9]

yes  2 [5.0-8.0]

1000 examples

1000 examples

1000 examples

1000 examples

Support

 
 
 
(b) 

 
 

Figure 9. Examples of simple decision tables: a) single feature table, b) multi-feature 
table. 

 
Other cases of decision differentiation are possible and they will be studied in this 

research together with various structures of decision matrices. 
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Analyses of many engineering data sets indicate that in many cases decision tables have 

distinct structures. Exploring different structures of tables is helpful in decision making 

due to: 

• Decision process becoming transparent to the user and computing environment 

• features get exposed which is helpful in planning data acquisition.  

 

The decision table in Fig. 10 illustrates the case where decisions are differentiated based 

on features and their values.  

 
 

Figure 10. Example of a decision table with differentiation based on features and their 
values. 

 
 

The decision table structure and the decision differentiation methods are determined by 

factors such as: 

• Type of the learning algorithm  

• Rule selection criteria 

• Constraints and objective functions imposed on a decision table structure 

 

The structured decision tables offer potential for multiple applications. They can serve as 

a backbone of a visualization environment (e.g., virtual reality) and increase transparency 

of the decision making process.  

 

3.5 Process Model 

Numerous methodologies have been developed for modeling processes. Although they 

vary in scope, representation, and theoretical foundations, each methodology provides 
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insights from a particular perspective. Some of the existing process-modeling 

methodologies of interest to modeling innovation are listed next. 

• UML: Unified Modeling Language is a visual and graphical modeling language to 

analyze and design object-oriented systems. Besides software development, UML 

can be used for process modeling. UML includes use case, sequence, 

collaboration, class, object, state, activity, component, and deployment diagrams 

(UML 2005).  

• CIM-OSA: Computer Integrated Manufacturing - Open Systems Architecture. 

Four enterprise views are provided: function, information, resource, and 

organization (Beekman 1989). 

• GRAI Method: This method is built around a conceptual reference model that is 

based on the theory of complex systems, hierarchical systems, organization 

systems, and the discrete activity theory (Doumeingts et al. 1987).  

• IDEF Methods: A family of tools, including IDEF0 for functional modeling and 

IDEF3 for process modeling initiated by Air Force Program for Integrated 

Computer-Aided Manufacturing (Mayer et al. 1992). 

• IEM: A public domain methodology designed around the object-oriented 

paradigm.  

• SSADM: A method of systems analysis with the focus on the information 

perspective (Ashworth 1988). 

 

A product development model (intertwined with innovation activities) involves activities 

that are not known in advance and are not well predicted. The uncertainty associated with 

the innovation activates calls for innovation process management (Tatikonda and 

Rosenthal 2000). Data-mining algorithms may be used to determine the underlying 

patterns of success. Though these patterns are likely to be temporal, any use of structures 

is helpful in the execution of the innovation process (Tidd et al. 2001).  

 

To date numerous innovation models have been generated (Tidd et al. 2001). The early 

models viewed innovation as linear process with focus on either a technology-push or a 

demand-pull innovation process (Schwery and Raurich 2004). The prevailing view in the 
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literature points to innovation models with complex interactions and cycles. The scope of 

innovation models has been widened to include suppliers, and business alliances, all 

serving customers demanding personalized products.   

 
 
 
4. Innovation Enhancing Tools 
Numerous tools have been developed in support of innovative design of products, 

including TRIZ (TRIZ Journal 2005), the creative problem solving (CPS) process 

(Daupert 2005), and the innovation technology (IvT) approach. 

 

TRIZ was developed to foster innovation by analyzing the patterns of problems and 

solutions, rather than relying on the spontaneous creativity of individuals or groups 

(Domb 2003). This is done by focusing on a problem in its basic form while 

simultaneously understanding that the problem considered is rarely the one to be solved. 

TRIZ handles three basic problems: the technical conflict and physical contradiction 

problem in which a solution creates another problem; the inventive problem where before 

a problem is solved, the solution of the conflict must be resolved; and the creation of the 

ideal machine/process in which something simplistic is constructed from a concept (Siem 

1996).  

 

The CPS (Daupert 2005) is a problem solver for a generation of innovative solutions. 

During the solution generation process, combining convergent and divergent thinking is 

used to produce numerous potential solutions, while the user imagination is used freely to 

aid in the creation of innovative and working solutions. 

 

Another approach used by engineers is the innovation technology, IvT, approach. It relies 

on various tools for problem-solving, e.g., modeling, simulation, virtual reality, data 

mining, artificial intelligence, rapid prototyping, high throughput chemistry, and high 

throughput screening. These technologies are becoming ubiquitous in the innovation 

process. The IvT approach has been used in the recent high profile projects, e.g., the 

design of the Millennium Bridge in London, reconstruction of the Leaning Tower of Pisa, 
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the design, creation, and building of the Bilbao Guggenheim Museum, and solving 

London’s roadway congestion problem (Report 2004). Other innovation tolls include 

CREAX (Creax 2005), Visual Mind (Visual Mind 2005), and Pull Thinking (Pull 

Thinking 2005). 

 

The above tools cover some aspects of the innovation space. Research is needed to 

identify gaps and explore other methodologies and tools enhancing innovation, e.g., 

creativity fostering tools. Yamamoto and Nakakoji (2005) described an interactive tool 

that impacts user's cognitive processes.  

 

 
5. Conclusion 
Increasing innovation awareness by the discovery of the underlying science is critical to 

corporations’ becoming progressive, competitive, and better prepared to handle future 

adversities. Innovation can fill the gap created by the shift in low-end manufacturing jobs 

and growing global market competitiveness. The paper outlined the need for the 

discovery of theories, processes, methodologies, and tools enhancing innovation. Some of 

the tools supporting innovation, e.g., genetic programming and data mining could be 

embedded in prototype software and integrated with the existing computational systems. 

Pattern discovery from data surrounding design, process, and service applications - and 

therefore data mining - and likely to become major solution approaches of the innovation 

cyber-infrastructure. The ramification and use of the existing theories (research is needed 

to formalize them), methodologies (e.g., group thinking, brainstorming), and innovation 

tools (e.g., TRIZ) needs be better understood, and new progressive models, 

methodologies, and tools should be developed. 
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